IXF-SUP Series

Supercontinuum Photonic Crystal Fibers

The IXF-SUP family are microstructured photonic crystal fibers designed for the efficient generation of supercontinuum with ti-sapphire and YAG pulsed pump sources. These fibers have a well-controlled Zero Dispersion Wavelength (ZDW) and feature low dispersion at the pump wavelength and high numerical aperture.

IXF-SUP fibers can be connectorized into patchcords or fiber assemblies for easier integration, handling and improved robustness.

Benefits & Features

- Pure silica core, low background losses
- · Small effective area, highly nonlinear
- · Well controlled dispersion profile
- Dispersion optimized for pumping near 780 nm & 1060 nm
- · Standard and PM version
- · Connectorization into patchcords possible

Applications

- · Supercontinuum generation
- · Frequency comb generation

	IXF-SUP-2-135-760	IXF-SUP-5-125-1050	IXF-SUP-5-125-1050-PM
Physical and Material parameters			
Material	Silica		
Core diameter (µm)	1.7 ± 0.2	5 ± 0.3	5 ± 0.3
Cladding diameter (µm)	135 ± 5	125 ± 2	125 ± 3
Cladding non-circularity (%)	< 2	< 2	< 7.5
Coating outside diameter (µm)	240 ± 10	245 ± 10	240 ± 10
Coating type	Dual coat high index acrylate		
Optical properties			
Zero dispersion wavelength (nm) *	760 ± 15	1050 ± 5	1050 ± 5
Mode field diameter @ZDW (μm)	1.6 ± 0.2	4.6 ± 0.3	4.5 ± 0.3
Effective area @ZDW (μm²)	1.9 ± 0.2	14 ± 2	16 ± 2
Nonlinear coefficient (W.km ⁻¹)	105 ± 10	10 ± 1	10 ± 1
Numerical aperture	0.4 ± 0.05	0.2 ± 0.02	0.2 ± 0.02
Background loss @ZDW (dB/km)	< 90	< 20	< 20
Background loss @1550 nm	-	< 15	< 30
Birefringence (x 10 ⁻⁴)	1 ± 0.5	_	2.3 ± 0.5

^{*} Zero dispersion wavelength (ZDW)

The SUP-2 fiber is optimized for pumping near 780 nm in the femtosecond regime, wheread the SUP-5 fiber is optimized for pumping near 1060 nm. The supercontinuum generated depends on the length of IXF-SUP fiber used and on the parameters of the seed laser: average power, pulse duration and repetition rate.

Typical attenuation and dispersion of IXF-SUP-5-125-1050-PM fiber.

Typical supercontinuum generated in 10 m of IXF-SUP-5-125-1050 with 300 mW 1064 nm pulse laser (1.2 ns @25 kHz)

PATCHCORDS & FIBER ASSEMBLIES

The IXF-SUP-5-125-1050 and IXF-SUP-5-125-1050-PM fibers can be connectorized into patchcords or pigtails for easier integration, handling and improved robustness. When connectorized, fiber end-faces are terminated with thin endcaps to seal and protect the hollow microstructure while maintaining the optical beam quality. Endcaps also reduce the power density at the glass/air interface which is beneficial for high-power operation.

Patchcord

Length (m)	Up to 12		
	Non-PM:	FC (APC or PC), SC (APC or PC), SMA	
Connectors	PM: FC (APC or PC) Other upon request		
Jacket	No jacket (bare fiber) Ø900 µm hytrel Ø3 mm PVC Stainless steel		
Endcap length (μm)	< 100, other lengths upon request		
Endcap material	Fused silica		
Transmission (%) *	> 60		
PER (dB) * For PM fibers only	> 20		

^{*} Measured at 532 nm or 553 nm

