Partnership with

SPECIALTY OPTICAL FIBER

Anti-Resonant Hollow Core Fibers

The IXF-ARF family are anti-resonant hollow-core fibers. ARF fibers exhibit a large mode effective area, ultra low dispersion within the transmission band and extremely low overlap of guided power with the surrounding silica (less than 2.10^{-5}). ARF fibers are particularly suited as delivery fiber for ultrafast laser operating in the visible and NIR wavelengths, for low latency applications at 1550 nm, and for gas sensing in the 2 and 3 μ m wavelength ranges.

IXF-ARF fibers can be connectorized into patchcords or fiber assemblies for easier integration, handling and improved robustness.

Benefits & Features

- Low loss for fiber delivery applications
- High damage threshold
- Ultra low dispersion in the transmission bands
- Nearly single mode guidance

(1) Calculated typical value from simulation

(2) At design wavelength

(3) Per turn

- Connectorization into patchcords possible
- Other wavelengths available upon request

Applications

- Delivery fiber for ultrafast lasers
- Low latency data transmission
- Gas-filled AR hollow core fiber laser
- Molecular tracing, gas detection

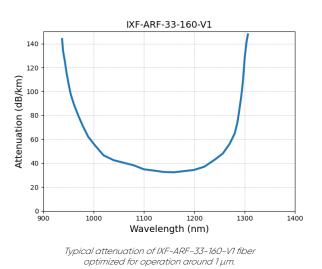
Related Publications

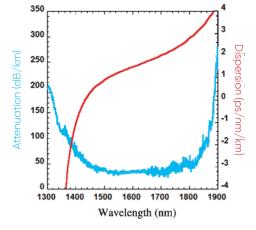
BRETAGNE

Product line PERF#S

- Jason Kapit and Anna P. M. Michel, «Dissolved gas sensing using an anti-resonant hollow core optical fiber,» Appl. Opt. 60, 10354–10358 (2021)
- 28th International Conference on Optical Fiber Sensors, Hamamatsu Japan, November 2023, Paper Tu3.10 (2023), «A High Sensitivity, Fast Response Optical Fiber Gas Sensor using Micro-drilled Anti-Resonant Fiber»

IXF-ARF-	40-240	41-240	33-160-V1	45-240-V1
Optical parameters				
Design wavelength (nm)	750	920	1064	1550
Attenuation (dB/km) ⁽²⁾	≤ 50	≤ 75	≤ 55	≤ 35
Bandwidth < 100 dB/km (nm)	700 – 915	820 - 990	1000 - 1260	1450 - 1750
Mode Field Diameter (µm) ^{(1), (2)}	29	34	26	37
Dispersion (ps/nm/km) ^{(1), (2)}	1	1	2	1
Numerical aperture ⁽¹⁾	0.02	0.02	0.03	0.03
3 dB bend loss radius (cm) $^{(2), (3)}$	≤ 5	≤ 5	≤ 5	≤ 7
Physical and Material parameters				
Material	Air core surrounded by Pure Silica			

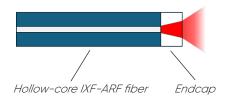

Material	Air core surrounded by Pure Silica				
Core diameter (µm)	38 ± 3	40 ± 3	33 ± 3	46 ± 3	
Silica diameter (µm)	242 ± 5	240 ± 5	160 ± 5	239 ± 5	
Coating diameter (µm)	398 ± 10	398 ± 10	325 ± 10	395 ± 10	
Coating type	Dual coat high index acrylate				
Proof-testing (kpsi)	≥ 20				



IXF-ARF Series

ARF fibers exhibit a gaussian profile and nearly-singlemode behavior. Their wide transmission window and moderate loss make them an appealing option for many applications, including the delivery of high power ultrafast lasers. The large mode field diameter and very low numerical aperture require special care when coupling optical signal into ARF fibers.


Typical attenuation and dispersion of IXF-ARF-45-240-V1 fiber optimized for operation around 1550 nm


PATCHCORDS & FIBER ASSEMBLIES

ARF fibers can be connectorized into patchcords or pigtails for easier integration, handling and improved robustness. When connectorized, fiber end-faces are terminated with thin endcaps to seal and protect the hollow microstructure while maintaining the optical beam quality.

Patchcord

Length (m)	Up to 12, longer lengths upon request
Connectors	FC (APC or PC) SC (APC or PC) SMA Other upon request
Jacket	No jacket (bare fiber) Ø900 μm hytrel Ø3 mm PVC Stainless steel
Endcap length (µm), typical	100, other lengths upon request
Endcap material	Fused silica

Exail reserves the right to change, at any time and without notice, the specifications, design, function or form of its products described herein.