SPECIALTY OPTICAL FIBER

IXF-RAD-MMSI-M-200-240-022-AL

Radiation Hardened Multimode Fiber

Radiation hardened optical fibers are designed to mitigate the effects of Radiation Induced Attenuation (RIA) and extend the fiber's lifetime when used in radiative environments. Leveraging a decade of investiments in R&D and research collaborations, Exail offers singlemode and multimode radiation hardened fibers for use in harsh environments with high radiation levels and/or extreme temperatures.

Aluminum coated fibers offer a wide operating temperature range, from cryogenic temperatures up to +400 °C. They are also hermetic to hydrogen, mitigating hydrogen darkening in hydrogen-rich environments.

Step-index multimode fibers are available with low-OH, mid-OH and high-OH content depending on the operating wavelength range. Other coatings and geometries are available upon request.

Benefits & Features

- + Ø200 μm pure silica core, F-doped cladding
- 0.22 numerical aperture
- Aluminum coating
- Operating temperature up to +400 °C
- Mid-OH content, optimized for VIS-IR operation

Applications

- Spectroscopy
- Plasma diagnostics and monitoring
- High power delivery

Related Products

• IXF-MMSI-L-200-220-022-AL Step-index multimode, Low-OH

Graded-index mulltimode

• IXF-MMGI-50-125-020-AL

Related Publications

Campanella, C.; De Michele, V.; Morana, A.; Mélin, G.; Robin, T.; Marin, E.; Ouerdane, Y.; Boukenter, A.; Girard, S. Radiation Effects on Pure-Silica Multimode Optical Fibers in the Visible and Near-Infrared Domains: Influence of OH Groups. Appl. Sci. 2021, 11, 2991. https://doi.org/10.3390/app110/2991

Typical attenuation profile of the IXF-RAD-MMSI-M-200-240-022-AL fiber.

Parameters

Core diameter (µm)	200 ± 4
Cladding diameter (μm)	240 ± 4
Numerical aperture	0.22 ± 0.02
Attenuation over 750 - 1150 nm (dB/km) *	≤ 25
Attenuation @600 nm (dB/km)	≤ 30
Attenuation @500 nm (dB/km)	≤ 40
Attenuation @400 nm (dB/km)	≤ 70
Core/Clad concentricity (µm)	≤ 1
Coating diameter (µm)	300 ± 15
Proof test level (kpsi)	100
RIA over 900 – 1100 nm (dB/km) ** X-rays, 300 kGy(SiO2), 5 Gy/s, +30 °C	≤ 20

* except 940 nm OH peak

** RIA = Radiation Induced Attenuation

Design parameters

Core material	Pure silica core
OH content	Mid-OH
Coating material	Aluminum
Operating temperature range (°C)	-269 to +400

More information about the 3F2E project

Exail reserves the right to change, at any time and without notice, the specifications, design, function or form of its products described herein.

contact.photonics@exail.com | www.exail.com Europe +33 1 30 08 94 50 | Americas +1 508 745 3487 | APAC +60 11 1623 1698

